

Tree biomass changes over the last century in old-growth forest stands: case from Slītere National Park

Laura Ķēniņa, Endijs Bāders, Didzis Elferts, Ieva Jaunslaviete, Elza Jaunslaviete

Slītere Nature Monument forest inventory from 1922

Slītere - high, forest-covered cliff –Livonian origin

Total area of Slītere National park – 16 360 ha

Old Monument – 1 100 ha

Key historical disturbances over the past centuries:

1824 Large wind storm

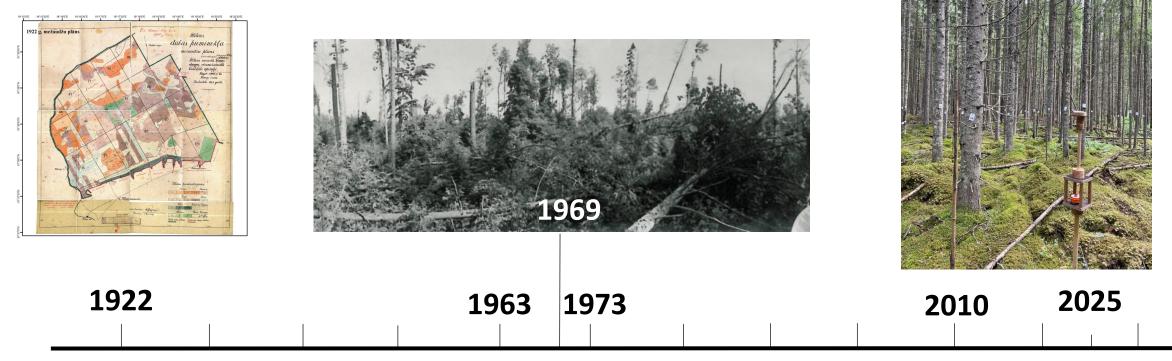
1838 Drainage of bog Baži

Mid-1800s Charcoal production

1918 Forest fire

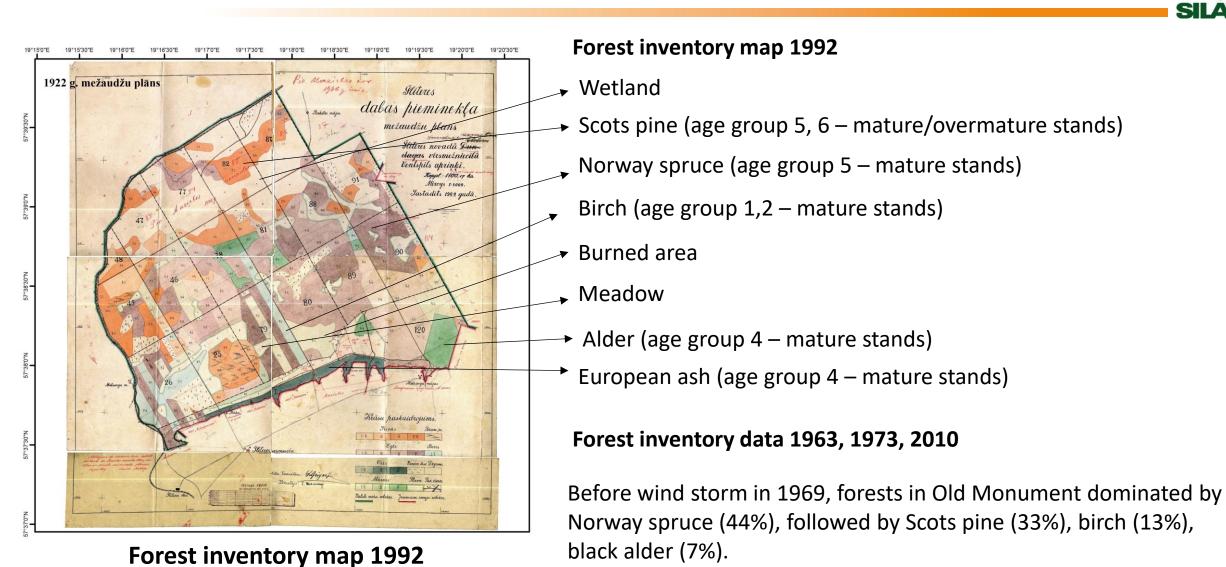
1967 and 1969 Large wind storm (~970 ha)

1992 Forst fire



Research aim

To assess the long-term changes in tree biomass (live and dead trees) over a last century with no human intervation in the forests of Slītere


Nature Monument.

Years

Materials and methods

4

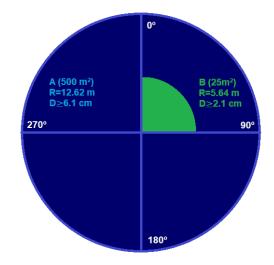
Field work in 2025

In total measured 65 sample plots in 11 forest stands in 5 groups.

Norway spruce forest stands on dry and wet mineral soils (Dm, Vr, Vrs, Dms). Birch stands on dry and wet mineral soils (Dm, Vr, Dms, Vrs).

Black alder on wet mineral soils (Dms, Vrs).

Scots pine on wet mineral soils (Gs).



Sample plot: part A R=12,62 m; 500 m² Tree dbh \geq 6,1 cm

Sample plot: subplots B R=5,64 m; 25 m² Tree dbh \geq 2,1 cm

Field data collection in 2025 - deadwood

Decay class	Description			
1	Raw wood. Trees that recently died, not yet dried up – with bark, branches			
	- may be leaves/needles attached			
2	Solid dead wood. Weakly decayed. The stem has a hard exterior surface, without bark.			
3	Somewhat decayed wood. The volume of the stem consists to 10–25% of soft wood. Knife penetrates for 1-2 cm.			
4	Decayed dead wood. The volume of the stem consists to 26–75% of soft or very soft wood			
5	Very decayed dead wood. The volume of the stem consists to 76–100% soft or very soft wood.			

Deadwood types:

Lying deadwood

Dead standing trees

Snags (dead trees with broken tops)

Decay classification for deadwood modified from Sandström et al. (2007).

Tree biomass and deadwood mass calculations

Live tree biomass for individual trees was calculated based on local biomass equations (dbh, tree height, tree species) according to Liepiņš et al. (2017, 2021).

Weighted means of C content for forest stands dominated by Norway spruce, Scots pine, birch or European aspen in Latvia (Bārdule et al. 2021). Carbon content 0,5 for other tree species

(Eggleston et al. (2006)).

Values	Weighted Mean C Content for Forest Stands, g⋅kg ⁻¹			
	Stands Dominated by Norway Spruce	Stands Dominated by Scots Pine	Stands Dominated by Birch	Stands Dominated by European Aspen
Average ± S.E.	525.6 ± 0.1 a	531.3 ± 0.1 b	521.4 ± 0.1 °	512.7 ± 0.1 ^d
Median	526.4	532.1	521.4	512.0
Range	518.7–529.6	518.4–533.2	513.9–527.9	509.0-523.4

The individual deadwood mass and carbon stock were estimated from the volume, decay-class-specific density, and carbon content of the main tree species in hemiboreal forests, following Köster et al. (2015) and tested in Latvia (26 sample plots).

Liepiņš J. et al. (2017) Equation for estimating above- and belowground biomass of Norway spruce, Scots pine, birch spp. and European aspen in Latvia. Scand J For Res 33(1). Liepiņš, J., Liepiņš, K., & Lazdiņš, A. (2021). Equations for estimating the above- and belowground biomass of grey alder (Alnus incana (L.) Moench.) and common alder (Alnus glutinosa L.) in Latvia. Scand J For Res 36(5), 389–400.

Bārdule A. et al. (2021) Variation in Carbon Content among the Major Tree Species in Hemiboreal Forests in Latvia. Forests 12.

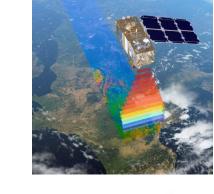
Eggleston et al. (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htm.

Above-ground biomass (AGB) estimation with remote sensing

Remote sensing data pre-procesing with SNAP, ArcGIS and R

Optical data: Sentinel-2 (Bands B2–B4, B8)

Radar data: Sentinel-1 (VV & VH backscatter and


Derived indices and metrics:


Vegetation indices: NDVI, SAVI, ARVI, RARSc **GLCM texture metrics** (5×5 moving window): contrast, homogeneity, entropy, correlation, variance, etc.

Feature matrix:

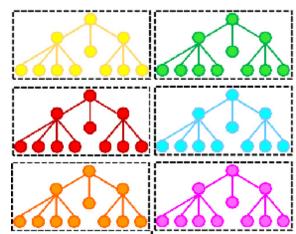
65 predictor variables (optical, radar, and texture features)

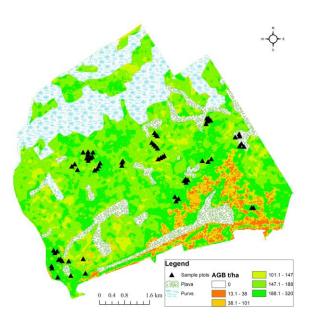
Target variable: AGB field

Above-ground biomass (AGB) Estimation with remote sensing (2)

Modeling Approach

Algorithm: Random Forest


Environment: Python / scikit-learn


Steps:

- 1. Split dataset into training (80%) and testing (20%) sets
- 2.Optimize hyperparameters using **GridSearchCV** with 5-

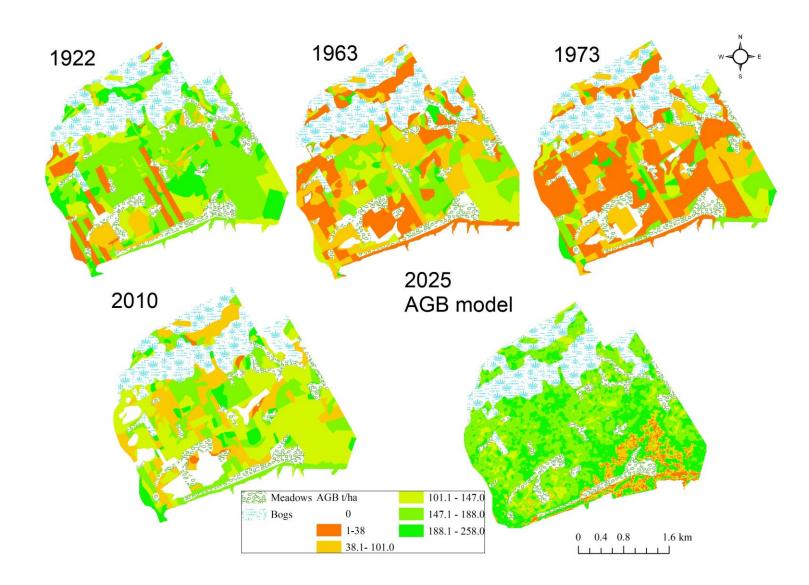
fold cross-validation

- •max_depth: [3, 5, 10, 20, None]
- •n_estimators: [100, 200, 500]
- •max_features: ['sqrt', 'log2', '1']
- •min_samples_split: [2, 5, 10]
- min_samples_leaf: [1, 2, 4]
- 3. Select the **best model** (lowest Mean Squared Error)
- 4. Evaluate model performance using:
 - •R², MSE, RMSE, RMSE %
 - Scatter plot: Observed vs Predicted AGB

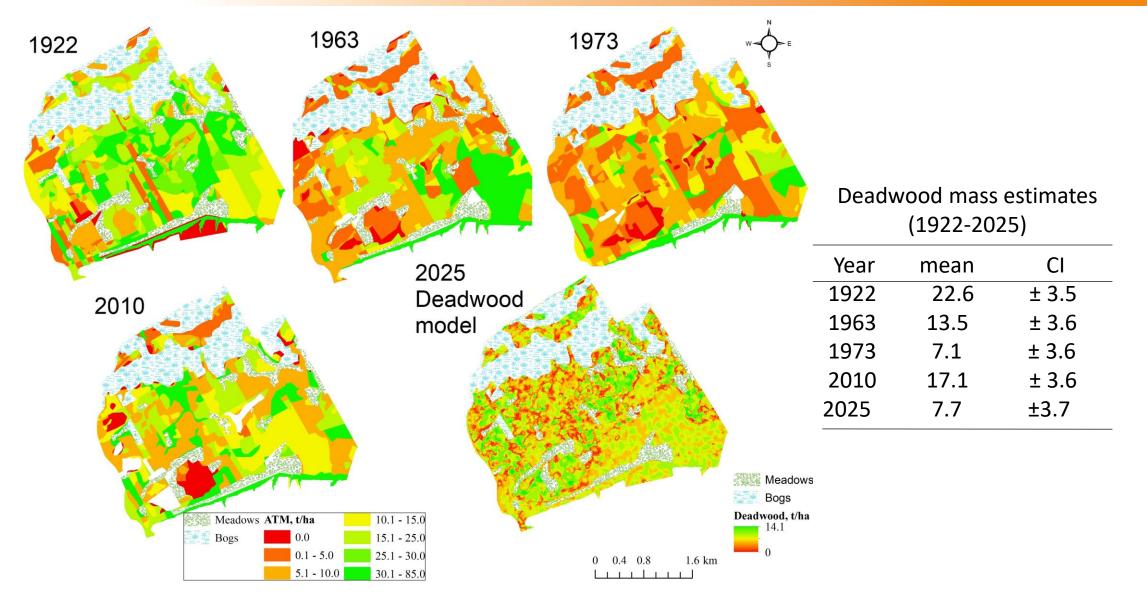
Data analysis

Imer(AGB~Year+(1|Forest stand),data=Slitere)




Results

Above-ground tree biomass, t / ha


1963 – before wind storm 1973 – after wind damage

Above-ground biomass (AGB) estimates (1922-2025)

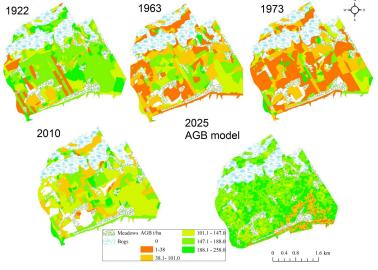
Year	Mean ABG	CI
1922	151	± 24.3
1963	112	± 24.3
1973	68	± 24.2
2010	150	± 24.4
2025	203	± 24.6

Deadwood (dead standing trees, snags) changes, t / ha

Field work estimations 2025: carbon stock, t C ha⁻¹

Mean carbon stock, t C ha⁻¹

Disturbance effect	Tree biomass	Deadwood
Inside windstorm area	125,5	8,8
Outside the damaged	155,3	7,4
area		



Summary

- Above-ground biomass (ABG) were significantly different between most of the inventory years high variability.
- 1969 windstorm caused a major drop in AGB, but by 2010, the biomass was simalar to estimation from 1922.

• Deadwood assessment using remote sensing methods remains challenging and requires also ground-true data.

Study supported by the Forest Development Fund (agreement No. 25-00-S0INZ03-000019)

Thank you!

Laura Ķēniņa laura.kenina@silava.lv

LSFRI Silava www.silava.lv

