# Biodiversity in primary vs. managed forests: Biological legacies of old living and large dead trees drive lichen diversity

Daniela Dúhová

Department of Forest Ecology, Faculty of Forestry and Wood Sciences,

Czech Univesity of Life Sciences in Prague







KeAi

Contents lists available at ScienceDirect

#### Forest Ecosystems







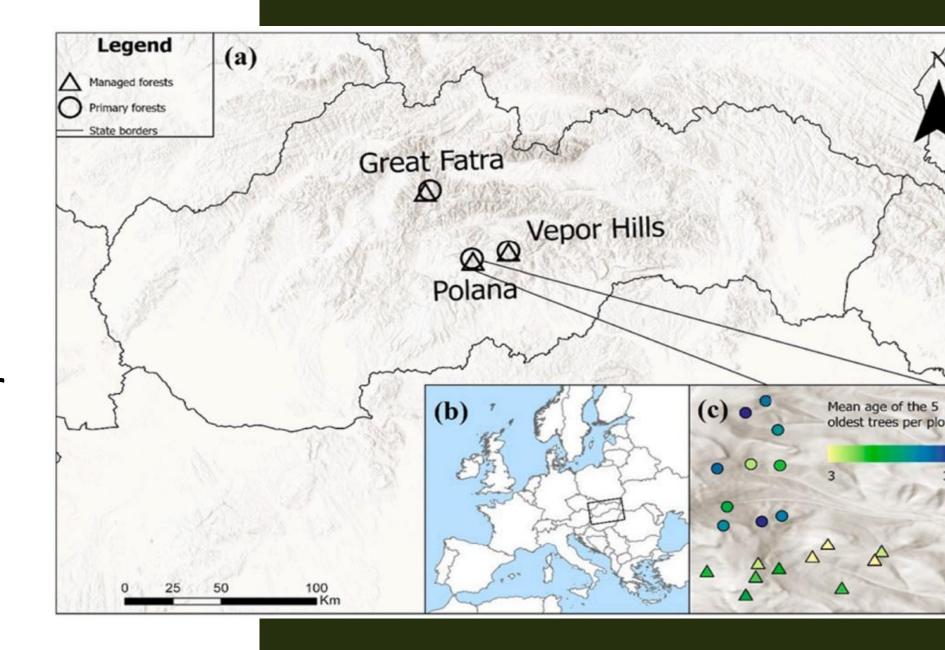
Biodiversity in primary vs. managed forests: Biological legacies of old living and large dead trees drive lichen diversity



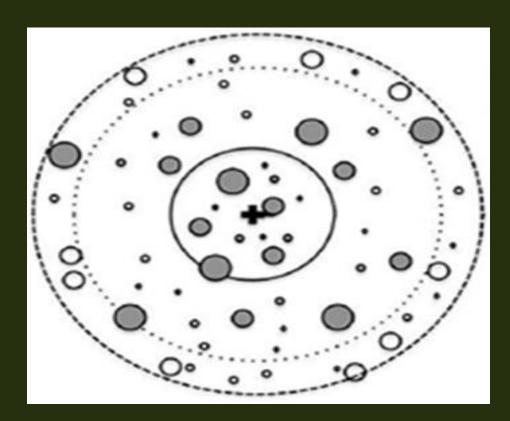
### **BACKROUND**

- Primary forests in Europe are scarse and fragmented
- Biodiversity hotspots
- Managed forests dominate the landscape.
  - Often simpler structure
- Lichens = indicators of forest naturalness

### STUDY AIMS


- Quantify differences in total and red-
- listed lichen species richness between forest types.
  - Identify which structural and
- environmental attributes drive lichen diversity.
  - Identify structural attributes that
- promote lichen diversity in managed forests and provide practical insights for conservation planning.



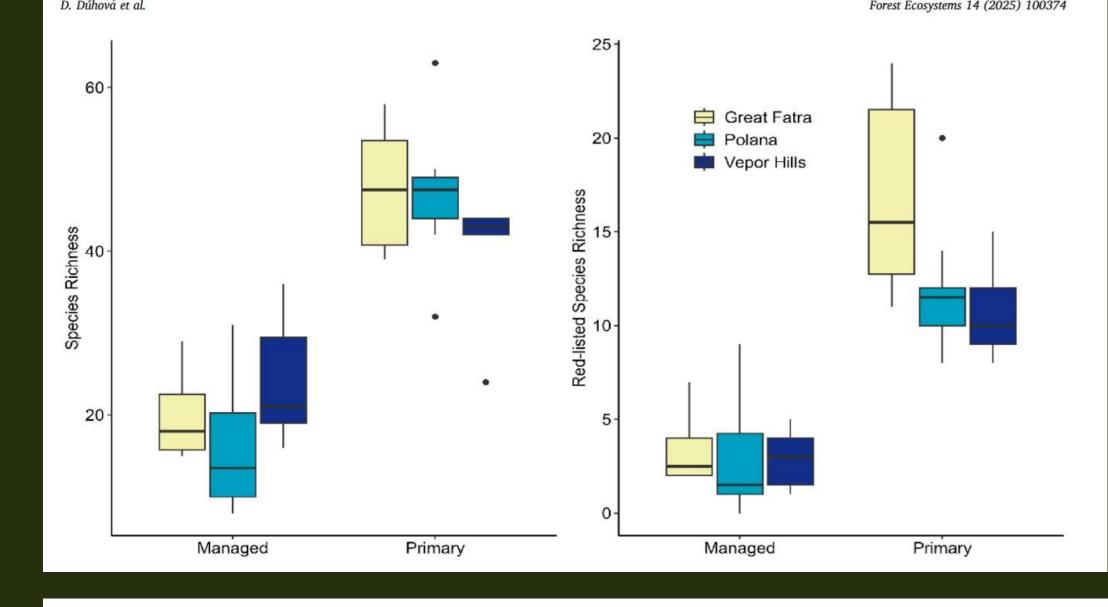


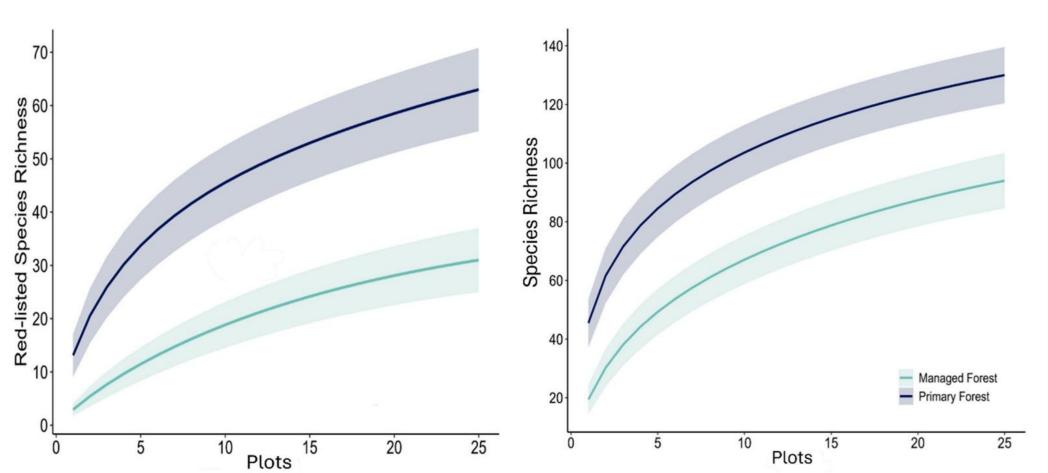

### STUDY DESIGN

- **WESTERN CARPATHIANS:** Pol'ana, Vepor Hills and Great Fatra.
- 50 PERMANENT PLOTS: paired *primary* vs. managed beech forests.
- STRUCTURAL DATA + dendrochronology.
  - LICHEN SURVEY: 5,156 specimens

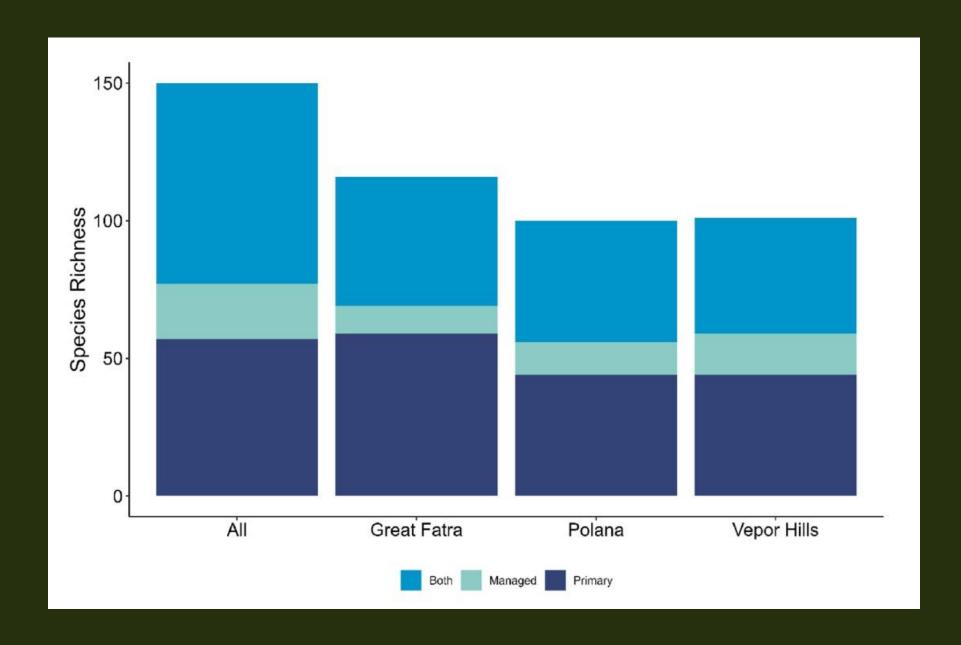






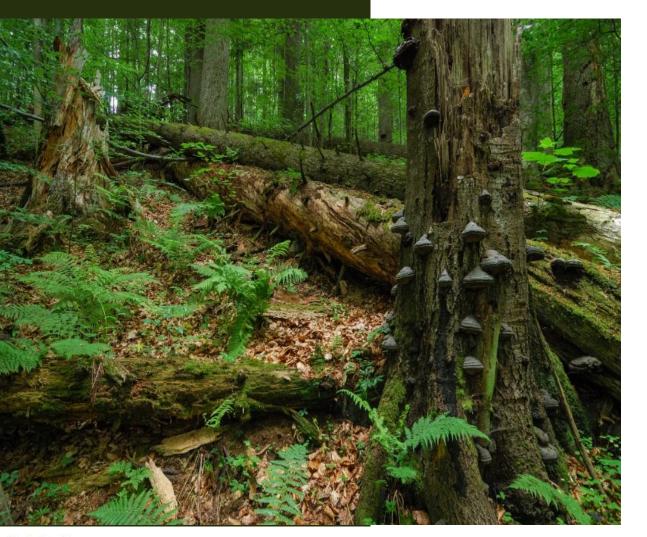


Primary forests host ~25 % more lichens and 2× more red-listed species

Primary forests: 126 species (62 red-listed)


Managed forests: 93 species (31 redlisted)

→ Even the most diverse managed plots reached only the lower range of primary forest richness.






## Unique species within forest types



- 37.5 % of all recorded species occurred only in **primary forests**.
- 13.9 % were unique to managed forests.
- This highlights the exceptional biodiversity value of primary forests.





## Variables and Analysis



**Table 1**Summary of structural and lichenological variables measured and observed values, and the results of the Mann–Whitney *U* test assessing differences between forest types.

| Variable                         | Description (unit)                                                                  | Primary |      |      | Managed |       |      | Significance |       |       |
|----------------------------------|-------------------------------------------------------------------------------------|---------|------|------|---------|-------|------|--------------|-------|-------|
|                                  |                                                                                     | Mean    | Min. | Max. | SD      | Mean  | Min. | Max.         | SD    | level |
| Environmental variables          |                                                                                     |         |      |      |         |       |      |              |       |       |
| Elevation                        | Elevation of the study plots centres (m a.s.l)                                      | 1165.5  | 1042 | 1285 | 66.2    | 898.4 | 541  | 1177         | 208.1 | ***   |
| Forest structure                 |                                                                                     |         |      |      |         |       |      |              |       |       |
| BA of live trees                 | Basal area of living trees (DBH $\geq$ 10 cm) (m <sup>2</sup> ·ha <sup>-1</sup> )   | 37.9    | 15   | 67   | 11      | 35.7  | 0    | 77           | 27.4  | ns    |
| Maximum DBH of standing deadwood | DBH of the largest standing DW per plot (DBH >10 cm) (cm)                           | 7.2     | 3.6  | 10.4 | 1.6     | 34.5  | 0    | 7.4          | 2.3   | ***   |
| Total deadwood                   | Sum of lying and standing DW (DBH $\geq$ 10 cm) (m <sup>3</sup> ·ha <sup>-1</sup> ) | 198     | 34   | 628  | 141.7   | 40.7  | 2    | 134          | 33.3  | ***   |
| Maximum tree age                 | Age of the oldest tree on study plots (years)                                       | 252.6   | 125  | 365  | 61.1    | 68.1  | 3    | 236          | 67.9  | ***   |
| Lichen species                   |                                                                                     |         |      |      |         |       |      |              |       |       |
| Lichen species richness          | Number of lichen species per study plot                                             | 45.48   | 24   | 63   | 7.9     | 19.4  | 8    | 36           | 7.7   | ***   |
| Red-listed (RL) lichen species   |                                                                                     |         |      |      |         |       |      |              |       |       |
| RL lichen species richness       | Number of red-listed lichen species per study plot                                  | 13.1    | 8    | 24   | 4.5     | 3     | 0    | 9            | 2.2   | ***   |



Variables: Environmental and structural.

Models: Generalized Least Squares (GLS) per forest type.

## Environmental and structural drivers of lichen species richness

#### Table 2

Final GLS results of best-fitting models for lichen species richness and red-listed species richness in managed forest plots. The table summarises regression coefficients and their levels of statistical significance and standard error for each variable.

| Managed forest                |                        |                |                          |                             |                |                          |  |
|-------------------------------|------------------------|----------------|--------------------------|-----------------------------|----------------|--------------------------|--|
|                               | Species richness       |                | _                        | Red-listed species richness |                |                          |  |
|                               | Regression coefficient | Standard error | Significance coefficient | Regression coefficient      | Standard error | Significance coefficient |  |
| Elevation                     | -0.0095                | 0.0062         | ns                       | 0.0032                      | 0.0017         | 3                        |  |
| Max. DBH of standing deadwood | 0.0264                 | 0.0046         | ***                      | (H)                         | -              | -                        |  |
| Basal area                    | -0.1283                | 0.0418         | **                       | -0.0459                     | 0.0165         | *                        |  |
| Tree maximum age              | =                      | v=v            |                          | 0.0289                      | 0.0063         | ***                      |  |

Model Results: Managed Forests

#### Table 3

Final GLS results of best-fitting models for lichen species richness and red-listed species richness in primary forest plots. The table summarises regression coefficients and their levels of statistical significance and standard error for each variable.

|                  | Species richness       |                |                          | Red-listed species richness |                |                          |  |  |
|------------------|------------------------|----------------|--------------------------|-----------------------------|----------------|--------------------------|--|--|
|                  | Regression coefficient | Standard error | Significance coefficient | Regression coefficient      | Standard error | Significance coefficient |  |  |
| Elevation        | 0.0405                 | 0.0226         |                          | 0.0292                      | 0.0127         | *                        |  |  |
| Tree maximum age | 0.0186                 | 0.0245         | ns                       | 0.0165                      | 0.0138         | ns                       |  |  |
| Basal area       | -0.2294                | 0.1340         | ns                       | -0.1368                     | 0.0752         | ( <b>*</b> )             |  |  |

Model Results: Primary Forests







## Conservation & management implication

#### **Primary forests**

Serve as irreplaceable refuges of biodiversity.

Protection of primary and old-growth forests in Europe should be the highest priority for forest biodiversity conservation, yet remains **incomplete**, with many areas still **unmapped and unprotected**.

Protecting primary and old-growth forests alone is insufficient to maintain biodiversity— effective conservation also depends on **enhancing structural and habitat complexity within managed forests.** 





### Acknowledgements

#### **Funding:**

Technology Agency of the Czech Republic (TAČR, project SS06010420) Internal Grant Agency, Czech University of Life Sciences Prague (IGA A\_13\_23)

#### Field & lab support:

REMOTE project and dendrochronology laboratory team

#### **Co-authors & collaborators:**

Jeňýk Hofmeister, Garrett W. Meigs, Josef Halda, Daniel Kozák, Matej Ferenčík, Rhiannon Gloor, Katarína Markuljaková, Jakob Pavlin, Ivo Pardus, Audrey R. Salerno, Michal Frankovič, Pavel Janda, Martin Dušátko, Miroslav Svoboda, Martin Mikoláš

#### **Special thanks:**

Forest managers and protected area staff in Slovakia for access and cooperation



Photo credit: Ondrej Kameniar and Matej Ferenčík