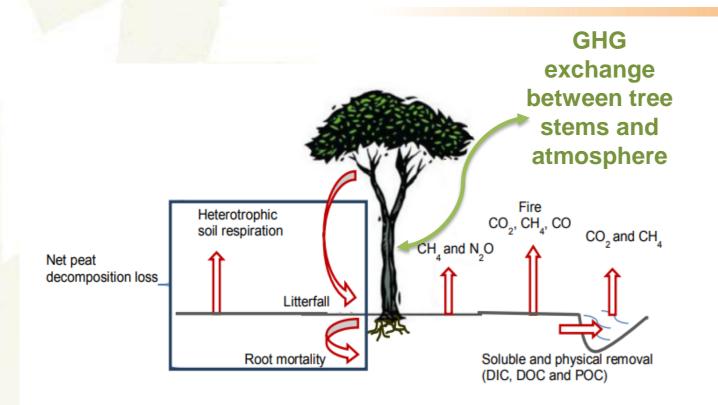
23<sup>rd</sup> International Scientific Conference ENGINEERING FOR RURAL DEVELOPMENT Latvia University of Life Sciences and Technologies, Jelgava, Latvia, 22.-24. May 2024



#### METHANE (CH<sub>4</sub>) AND NITROUS OXIDE (N<sub>2</sub>O) EMISSIONS FROM SURFACE OF DECIDUOUS TREE STEMS AND SOIL IN FORESTS WITH DRAINED AND NATURALLY WET ORGANIC SOILS


Ilona Skranda, Dana Purvina, **Arta Bardule, Guna Petaja** Latvian State Forest Research Institute "Silava" e-mail: arta.bardule@silava.lv

This study was funded by the project "Evaluation of factors affecting greenhouse gas (GHG) emissions from surface of tree stems in deciduous forests with drained and wet soils", The Latvian Council of Science, Fundamental and applied research projects, agreement No.: LZP-2021/1-0137

LSFRI Silava Riga street 111 Salaspils, LV-2169, Latvia Phone: 67942555, e-mail: inst@silava.lv www.silava.lv



# Aim of the study



Summary of greenhouse gas (GHG) fluxes in tree-dominated ecosystems (IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands)



- to assess the magnitude of GHG, (CH<sub>4</sub> and N<sub>2</sub>O) fluxes from organic soil and the stem surface of black alder, silver birch and aspen in forest stands with drained and naturally wet organic soils;
- to examine their correlations with environmental factors (groundwater level, soil temperature).

### Materials and methods



10 study sites in forest stands with drained and naturally wet organic soils in Latvia (Europa's hemiboreal zone) dominated by:

- black alder (Alnus glutinosa (L.) Gaertb.);
- silver birch (*Betula pendula* Roth.);
- aspen (*Populus tremula* L.)

 Tab. 1. General description of the study sites and sample trees in deciduous tree forest stands with drained and naturally wet organic soils in Latvia (n – number of study sites)

| Soil moisture<br>conditions | Tree species       | Study site<br>identifier | Location of study site (WGS84) |          | Mean tree diameter<br>at 1.3 m height of        | Characteristics of sample<br>trees (range) |           |
|-----------------------------|--------------------|--------------------------|--------------------------------|----------|-------------------------------------------------|--------------------------------------------|-----------|
|                             |                    |                          | x                              | Y        | selected tree<br>species in forest<br>stand, cm | Diameter at<br>1.3 m height,<br>cm         | Height, m |
| Drained (n=6)               | Silver birch (n=2) | OS5                      | 56.67388                       | 25.89674 | 30.5                                            | 27.0-42.3                                  | 26.3-29.3 |
|                             |                    | OS8                      | 56.71001                       | 26.05986 | 11.7                                            | 14.6-20.0                                  | 16.6-20.5 |
|                             | Black alder (n=2)  | OS3                      | 56.6847                        | 25.88981 | 14.8                                            | 15.9-21.9                                  | 15.9-17.2 |
|                             |                    | OS6                      | 56.64171                       | 26.01253 | 32.1                                            | 29.8-39.7                                  | 30.6-32.5 |
|                             | Aspen<br>(n=2)     | OS1                      | 56.4466                        | 22.85432 | 12.7                                            | 14.6-23.1                                  | 18.0-23.1 |
|                             |                    | OS2                      | 56.42684                       | 22.77874 | 21.7                                            | 13.8-29.4                                  | 18.9-28.2 |
| Naturally wet<br>(n=4)      | Silver birch (n=2) | OS4                      | 56.68495                       | 25.88707 | 10.5                                            | 11.9-18.8                                  | 13.9-20.1 |
|                             |                    | OS7                      | 56.71074                       | 26.05881 | 25.0                                            | 14.2-36.4                                  | 16.9-20.6 |
|                             | Aspen<br>(n=2)     | OS9                      | 57.30307                       | 26.03518 | 32.5                                            | 25.2-49.4                                  | 30.9-31.5 |
|                             |                    | OS10                     | 57.29077                       | 25.99702 | 21.0                                            | 15.8-25.5                                  | 20.0-24.7 |

# Materials and methods

- CH<sub>4</sub> and N<sub>2</sub>O fluxes from the surface of tree stems were monitored during the frostfree period in 2022 (May-November) and 2023 (April-October).
  - gas samples were taken using manual chambers (volume 2.48-2.86 L) attached to sample tree stems (area 158-280 cm<sup>2</sup>) at a height of 1.3 m
- CH<sub>4</sub> and N<sub>2</sub>O fluxes from soil were monitored in the period from May 2022 to October 2023.
  - gas samples from soil were taken using closed static opaque chambers (volume 65.5 L) positioned on the permanent circular collars installed in the soil.



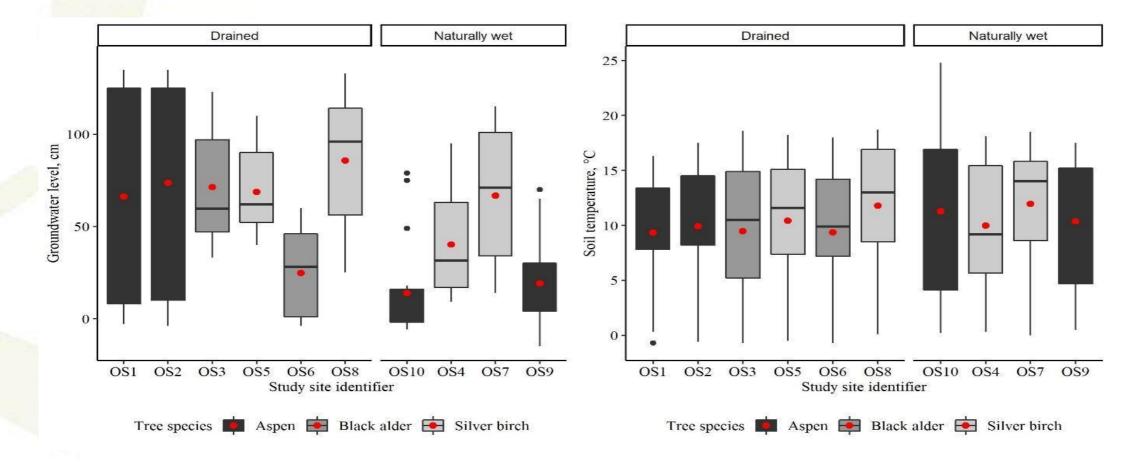




### Materials and methods

- Gas sampling was conducted once a month.
- Concentrations of  $CH_4$  and  $N_2O$  in gas samples were analyzed using gas chromatography (GC) with a Shimadzu Nexis GC-230 instrument.
- During each study site survey, several environmental parameters were monitored: air temperature, soil temperature at 5 cm depth, groundwater level.

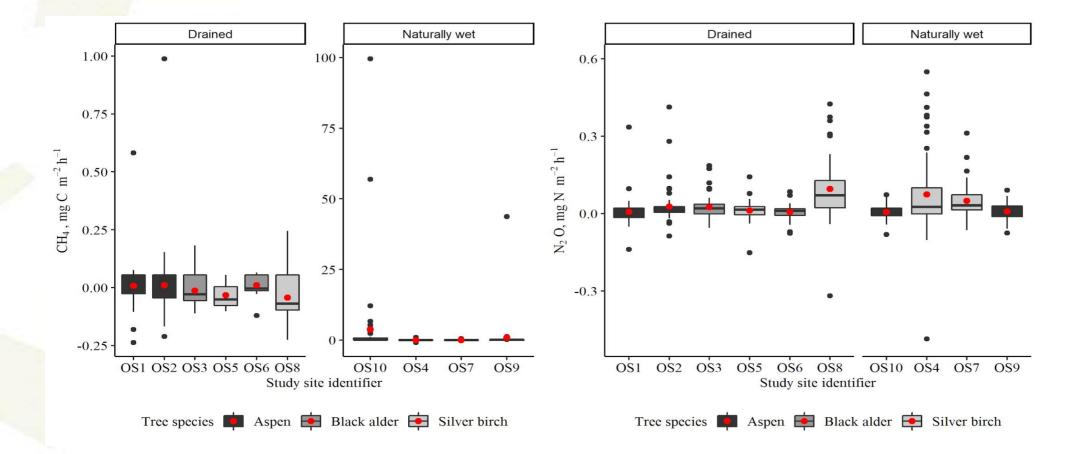








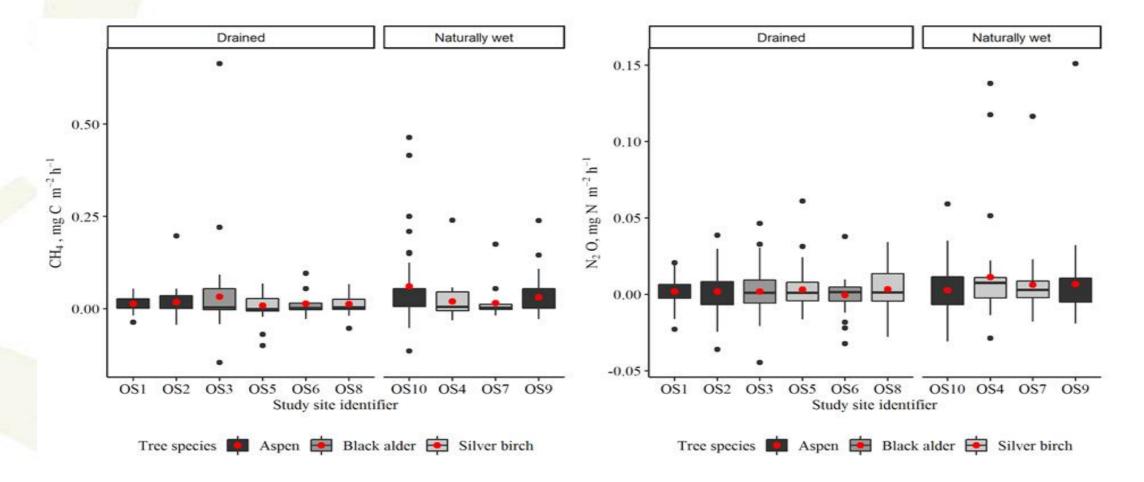

#### Results






*Fig. 1.* Groundwater level below soil surface and soil temperature at 5 cm depth in study sites with drained and naturally wet organic soil (the medians are bold horizontal lines in the boxes, the mean values are red dots, and the black dots are outliers of the datasets)

### Results






*Fig. 2.* Variation of  $CH_4$  and  $N_2O$  fluxes from organic soil among study sites (the medians are bold horizontal lines in the boxes, the mean values are red dots, and the black dots are outliers of the datasets)

#### Results





*Fig. 3.* Variation of  $CH_4$  and  $N_2O$  fluxes from surface of tree stems among study sites (the medians are bold horizontal lines in the boxes, the mean values are red dots, and the black dots are outliers of the datasets)

## Conclusions



- Both drained and naturally wet organic soils were sources of CH<sub>4</sub> and N<sub>2</sub>O emissions. In addition to this, drained organic soil also acted as a slight CH<sub>4</sub> sink.
- CH<sub>4</sub> emissions from naturally wet organic soil were higher than from drained soil and the mean CH<sub>4</sub> emissions tended to increase with higher GWL (closer to the soil surface). N<sub>2</sub>O emissions from organic soil were similar for both naturally wet and drained conditions and, contrary to the CH<sub>4</sub> emissions, tended to increase with lower GWL.
- Stems of the studied tree species (black alder, silver birch and aspen) were sources of CH<sub>4</sub> and N<sub>2</sub>O emissions. Higher CH<sub>4</sub> and N<sub>2</sub>O emissions from tree stems were observed in the forest stands with naturally wet organic soil compared to drained conditions.
- Drainage of organic soils in forest land can alter (mostly reduce) CH<sub>4</sub> and N<sub>2</sub>O emissions. However, due to high variation in studied GHG fluxes, the number of measurement points should be increased to prove the significance of the difference.

## Thank you for attention!







This study was funded by the project "Evaluation of factors affecting greenhouse gas (GHG) emissions from surface of tree stems in deciduous forests with drained and wet soils", The Latvian Council of Science, Fundamental and applied research projects, agreement No.: LZP-2021/1-0137