

1.1.1.2/VIAA/4/20/687

REDUCTION OF WOOD BASIC DENSITY IN DECAYED GREY ALDER STEMS

Jānis Liepiņš; Alise Bleive; Kaspars Liepiņš; Andis Lazdiņš

Conference "Rural Development 2021: Challenges for Sustainable Bioeconomy and Climate Change

September 21-23th, 2021

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Objective of the study

The <u>aim</u> of this study is to estimate the impact of the internal stem decay on wood basic density in grey alder stems.

*According to national forest inventory data, grey alder forest stands cover 10.2% of the total forest area in Latvia.

Introduction

- Internal stem decay is a naturally occurring process, common to all forests and most prevalent in the lower boles of older trees;
- Data on basic density in tree stems are needed for biomass estimation as determined by multiplying the stem volume with the average stem density;
- Biomass equations have typically been developed from healthy, decay-free trees.

Study material (I)

Study material (II)

- Five grey alder forest stands;
- 21 decayed tree stems and 15 healthy tree stems;
- The densities of 401 intact wood, 212 discoloured wood and 117 spongy rot specimens were measured from the sampled trees.

Methods (I)

Through Resistograph technology, it is able to detect wood decay, stages of rot, hollow areas, cracks and ring structure.

RESISTOGRAPH[®] 650-EA with 50 cm drilling depth

Methods (III)

Results and Conclusions (I)

Forests stands of grey alder investigated

Stand Nr.	DBH _g , cm	H _g , m	Number of trees ha ⁻¹	G (m² ha⁻¹)	Age (year)	Stand volume, m ³ ha ⁻¹	Decayed trees containing spongy rot, %
1	20.9	23.7	580	19.7	54	212.0	27.6
2	20.1	24.4	1240	39.2	40	437.9	17.7
3	31.0	24.2	420	31.7	70	341.9	80.9
4	21.8	21.3	960	35.8	55	348.2	23.0
5	20.7	21.7	820	27.6	37	274.9	2.4

30.3%

Results and Conclusions (II)

The mean basic density of intact wood differed significantly (p < 0.01) from the mean density of discolored wood and spongy rot.

*Different letters indicate statistically significant differences.

Thank you for your attention!

This research was funded by the European Regional Development Fund's Post-doctoral Research project No. 1.1.1.2/VIAA/4/20/687 "Reducing uncertainty in the calculation of forest stand biomass and carbon stock in Latvia".

