

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Pētījums "Lēmumu pieņemšanas atbalsta rīka izstrāde integrējot informāciju no vecām daļēji dabiskām mežaudzēm precīzākai oglekļa bilances novērtēšana" (Nr. 1.1.1.1/19/A/130)

13.12.2022. Pētījuma rezultāti prezentēti Eiropas Komisijas Directorate-General for Agriculture and Rural Development (DG AGRI) pārstāvjiem

Ziņojums: Āris Jansons "*Climate change mitigation potential of forests on organic soils: ditch or no ditch?*" (skat. prezentāciju pielikumā).

LVMI Silava un Eiropas Komisijas DG AGRI divpusējā sanāksme

1.	Ilze Lāce	Zemkopības ministrijas nozares	ilze.lace@mfa.gov.lv
		padomniece, Latvijas	
		pārstāvniecība Briselē	
2.	Āris Jansons	LVMI Silava vadošais pētnieks	<u>aris.jansons@silava.lv</u>
3.	Daiga Zute	LVMI Silava pētniece	daiga.zute@silava.lv
4.	Argyro Zerva	European Commission-DG AGRI	argyro.zerva1@ec.europa.eu
		(Brussels) Team Leader –	
		Forestry team at European	
		Commission-DG AGRI Brussel,	
		Belgium	
5.	Risto Artjoki	Policy Officer – Climate Change	risto.artjoki@ec.europa.eu
	-	and Environment Directorate-	
		General for Agriculture and	
		Rural Development Deputy	
		Director General, in charge of	
		Directorates B, C and D	
		Sustainability Environmental	
		Sustainability (AGRI.B.2), Rue	
		de la Loi 130, 1000 Brussel,	
		Belgium	
6.	Tamas Szedlak	Forestry expert – DG AGRI,	tamas.szedlak@ec.europa.eu
		Brussel, Belgium	

INVESTING IN YOUR FUTURE

Development of a decision support tool integrating information from old-growth semi-natural forest for more comprehensive estimates of carbon balance" (ERDF No. 1.1.1.1/19/A/130)

Climate change mitigation potential of forests on organic soils: ditch or no ditch?

Āris Jansons

Old-growth Forests in the Context of Climate Policy: discussion with EC 13.12.2022

Topicality

- Old forest stands in the study corresponds to FAO classification n6 category – *old-growth forest* (Buchwald 2005).
- Soils, especially organic soils are stated as large source of greenhouse gas emissions in forest ecosystems. Thus, climate strongly affects carbon exchange in soil and carbon cycle after drainage.
- Growing role of climate change mitigation and old-growth forests have triggered interest of empirical data on drained organic soils, especially in hemiboreal Latvia

Topicality

- Old forest stands in the study corresponds to FAO classification n6 category – *old-growth forest* (Buchwald 2005).
- Soils, especially organic soils are stated as large source of greenhouse gas emissions in forest ecosystems. Thus, climate strongly affects carbon exchange in soil and carbon cycle after drainage.
- Growing role of climate change mitigation and old-growth forests have triggered interest of empirical data on drained organic soils, especially in hemiboreal Latvia

The aim

- We aimed to assess soil greenhouse gas flux exchange in old-growth Scots pine (*Pinus* sylvestris) and Norway spruce (*Picea abies*) stands on fertile periodically waterlogged and drained organic soils with contrasting groundwater levels
- To achieve it, we need data characterizing:
- 1) carbon storage
- 2) GHG emissions

Study sites: emphasis on long-term effects!

- Forests stands were pre-selected and checked in field for actual occurrence of a chosen forest type, age group (>150 years), dominance of target tree species(>60% from basal area), old trees, no human intervention.
- Drainage systems in selected stands have been established more than 60 years ago

stands on wet (periodically waterlogged) organic soils with high groundwater level (High GWL)

stands on drained organic soils with low groundwater level (Low GWL)

High GWL = season average groundwater level <50cm from ground surface **Low GWL** = season average groundwater level >50cm from ground surface

I Carbon storage

Vesetnieki study site

Carbon storage: changes of ground level

- Drainage (ditch) system established in 1960. Ground level measurements in 1966, 1970, 1975, 1977, 2014.
- 54 years after drainage the ground level has decreased by 26 cm

Years after drainage

Vesetnieki study site

Carbon storage: peat soil density

Butlers et.al., 2021 Samariks et al., 2022

- In the analyzed layers peat density (kg m⁻³) increases significantly
- No significant differences between soil carbon stock in drained and undrained stands (60 years after drainage system establishment)
- Significant increase was observed in accumulated tree biomass carbon and deadwood carbon content
- In one forest rotation cycle stands with a drainage system has accumulated significantly more carbon (additional 71 t C ha⁻¹) compared to forest stands without drainage systems

II Emissions: soil CO₂ emissions

Fig.1 Soil total CO₂ emissions in old-growth Scots pine (A) and Norway spruce (B) stands per measurement month and groundwater level category. Whiskers denote 95% confidence interval. * - significant differences between site categories

Soil CO₂ emissions

Fig.2 Soil total CO₂ emissions and soil temperature relationship in old-growth Scots pine (A) and Norway spruce (B) stands per groundwater level category. Grey area denotes 95% confidence interval.

Soil CH₄ emissions

Fig.3 Soil CH₄ emissions in old-growth Scots pine (A) and Norway spruce (B) stands per measurement month and groundwater level category. Whiskers denote 95% confidence interval. * - significant differences between site categories

Season average soil CH4 flux

-6.1e-07 \pm 9.43e-08 mg m2 s^-1 1.67e-07 \pm 1.5e-07 mg m2 s^-1

Season average soil CH4 flux

-9.25e-07 \pm 5.95e-06 mg m² s⁻¹ 1.13e-05 \pm 4.51e-06 mg m² s⁻¹

Soil CH₄ emissions

Fig.4 Soil CH₄ emissions and soil temperature relationship in old-growth Scots pine (A) and Norway spruce (B) stands per groundwater level category

GHG emission PCA analysis

Principal component 1

Samariks, Jansons et al., 2022, submitted

Take-home messages

- Soil is relatively stable carbon pool with minor fluctuations after forest drainage in the long-term
- CO₂ flux has seasonal trend and close relationship with soil temperature.
- Forest drainage reduces CH₄ flux and low/regulated groundwater level can ensure CH₄ accumulation
- Forests on drained organic soils are significant to achieve climate mitigation targets (climate neutrality)

INVESTING IN YOUR FUTURE

Development of a decision support tool integrating information from old-growth semi-natural forest for more comprehensive estimates of carbon balance" (ERDF No. 1.1.1.1/19/A/130)

Thank you for your attention! 🙂

Contact information:

- aris.jansons@silava.lv
- +371 29109529