

INFLUENCE OF TEMPERATURE ON THE ANTAGONISM OF TRICHODERMA SPP. AGAINST HETEROBASIDION ANNOSUM S.L. IN VITRO Laura Alksne¹, Zaiga Petrina¹, Daina Eze¹, Vizma Nikolajeva¹, Tālis Gaitnieks² 1 Faculty of Biology, University of Latvia 2 Latvian State Forest Research Institute "Silava"

The main goal

Find Trichoderma spp. :

- with antagonistic influence against Heterobasidion annosum s.l.;
- efficiency in low temperatures

Heterobasidion annosum conidiophore with conidia in 400x increase

Trichoderma sp. conidiophore with conidia in 400x increase

Trichoderma spp.

- Found in soil, on dead trees, needles, wet or decomposing wood
- Concentrated near the plant root system
- Survives in soil for decades
- Usually the fastest growing at 25-30 °C
- Grows relatively fast and emits specific type of antibiotic substances
- Strong antagonists against soil pathogenic fungi
- Usually gets the most antagonistic properties at 15-20 °C
- Saprophytic fungi, which are used as biological agents for protection against plant diseases

Heterobasidion annosum s.l. (H. annosum s.s., H. parviporum)

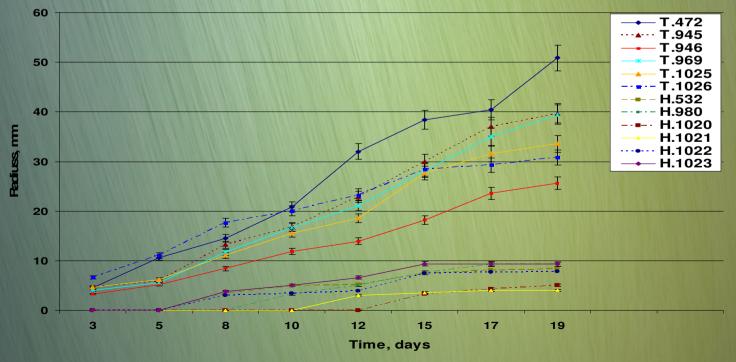
- Causes the conifer root rot pathogen infection
- Widespread in the northern hemisphere
- Fruiting bodies are on the lower surface of infected roots
- The primary source of infection in healthy forest plantations - spores
- Mycelium growth begins at 0-20 ℃
- Preserves viability in degrading wood

Materials and methods

 For the characterization of antagonistic properties against *Heterobasidion annosum* (3 strains) and *H. parviporum* (4 strains) twenty four *Trichoderma* spp. strains, isolated mainly in Latvia, were estimated (Table 1).

Table 1. Trichoderma spp. andHeterobasidion annosum s.l.isolates used in this study

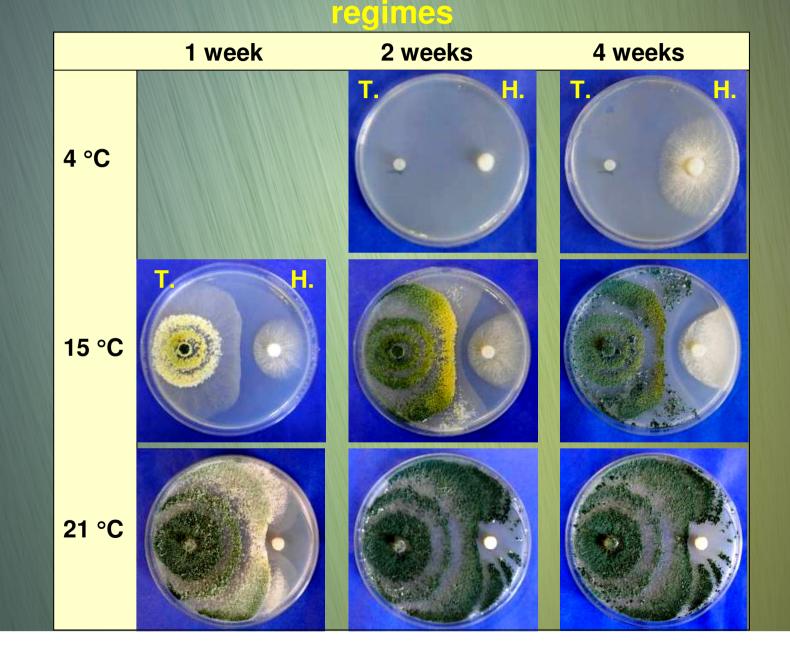
Number in MSCL	Species	Substrate of isolation	Country of origin
309	T. asperellum	Soil	Latvia
335	T. asperellum	Soil	Latvia
450	<i>T. citrinoviride</i>	Soil	Latvia
451	T. longibrachiatum	Biopreparation	Estonia
453	T. harzianum	Soil	Latvia
472	T. viridescens	Rhododendron	Latvia
485	T. koningii	Peat	Latvia
488	T. asperellum	Biopreparation	Byelorussian
538	T. viridescens	Cranberry leaf	Latvia
584	Trichoderma sp.	Historical masonry wall	Latvia
585	T. viride	Historical masonry wall	Latvia
844	T. asperellum	Soil	Latvia
845	T. viride	Soil	Latvia
867	T. hamatum	Soil	Latvia
883	T. rossicum	Soil	Latvia
945	T. viride	Soil	Latvia
946	T. viride	Soil	Latvia
966	T. asperellum	Soil	Latvia
969	T. viride	Soil	Latvia
1011	T. asperellum	Wastwater sludge	Latvia
1012	T. koningii	Lake sapropel	Latvia
1024	T. polysporum	Picea abies, wood	Sweden
1025	T. koningii	Picea abies, wood	Latvia
1026	T. viride	Alnus incana, stem	Latvia
532	H. annosum s.s.	Pinus sylvestris, root	Latvia
980	H. parviporum	Pinus sylvestris, root	Latvia
981	H. parviporum	Pinus sylvestris	Latvia
1020	H. annosum	Pinus sylvestris	Latvia
1021	H. annosum	Pinus sylvestris	Latvia
1022	H. parviporum	Picea abies, stem	Latvia
1023	H. parviporum	Picea abies	Latvia


 Dual culture interaction between two fungi was studied by inoculating malt extract agar medium (MEA, Becton Dickinson) plates. The plates were incubated at 4 °C, 15 °C and 21 °C for four weeks in darkness, the ability of one fungus to restrict the growth, or to overgrow the other was observed twice a week and mycelial extension was measured.

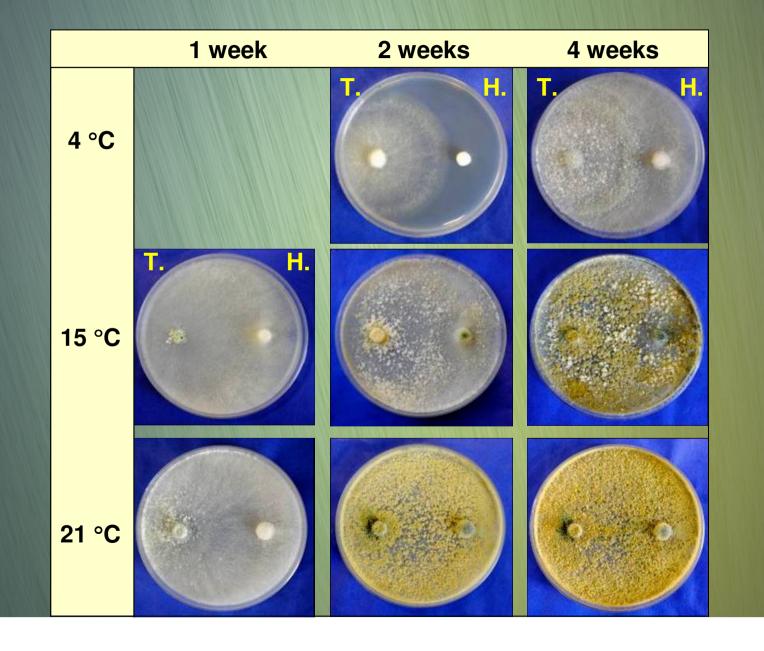
Results and discussion

Almost all of the investigated fungi were growing at all tested temperatures (4 ℃, 15 ℃ and 21 ℃), but the growth was comparatively slow at 4 ℃. Moreover, the growth rate of *Heterobasidion* strains was slower than most of investigated *Trichoderma* strains (Fig. 1).

Fig. 1 . Mycelial radii of *Trichoderma* (T.) and *Heterobasidion* (H.) colonies during incubation on MEA at 4 oC.

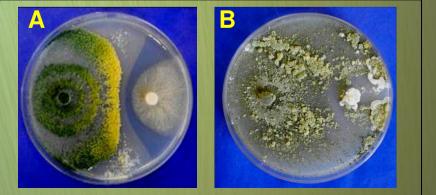


 In accordance with growth rate, it is possible to divide investigated *Trichoderma* species in three groups. *T.viride* strains formed the fast growing group. *T. asperellum* represented the slow growing group but *T. koningii* and *T.viridescens* included in fastest group growing at low temperature and in the slowest group when growing at the moderate temperature.


Table 2. Radial growth rate (mm h⁻¹) of colonies of *Trichoderma* and *Heterobasidion* species on MEA at different temperatures

Species	Number of strains	Rate of growth, mm h ⁻¹ ±S.D.		
		4 °C	15 °C 2	l °C
T. asperellum	6	0.016±0.026	0.158±0.017	0.269±0.015
T. citrinoviride	1	0.055	0.155	0.326
T. hamatum	1	0.039	0.181	0.293
T. harzianum	2	0.014±0.014	0.152±0.027	0.274±0.011
T. koningii	3	0.080±0.015	0.194±0.040	0.344±0.077
T. longibrachiatum	1	<0.010	0.185	0.284
T. polysporum	1	0.055	0.117	0.194
T. rossicum	1	0.064	0.138	0.187
T. viride	6	0.080±0.009	0.219±0.031	0.338±0.039
T. viridescens	2	0.073±0.032	0.184±0.009	0.284±0.014
H. annosum s.s	3	0.009±0.008	0.033±0.012	0.085±0.019
H. parviporum	4	0.018±0.005	0.041±0.003	0.110±0.014

Dual growth of *T.asperellum* 1011 (T.) and *H. parviporum* 981 (H.), incubated in different temperature



Dual growth of *T. viride* 946 (T.) and *H. parviporum* 980 (H.), incubated in different temperature regimes

- Heterobasidion spp. strains were overgrown by 63% of Trichoderma spp. strains after two weeks at 21 °C and by 33% strains at 15 °C. 25% from all tested Trichoderma strains did not grow and only one strain (T. viride 969) could overgrow Heterobasidion spp. after two week incubation at 4 °C. However T. viridescens 472, T. viride 585, T. viride 945 and T. viride 946 showed significant level of antagonism at all of the investigated temperatures.
- Gradually *Trichoderma* started overgrowing *H. annosum* s.I. Only few strains formed antagonism – a sterile zone between antagonistic colonies (Fig.3A) or no zone of inhibition formed between colonies (Fig. 3B).

Fig. 3. Dual growth after 4 weeks at 15 $^{\circ}$ C (A) of *T. asperellum* 1011 (on the left) and *H. parviporum* 981 (on the right), (B) *Trichoderma* sp. 584 (on the left) and *H. annosum* s.s. 532 (on the right)

Conclusions

- The growth of investigated *Trichoderma* strains was faster in comparison with the growth of all seven *Heterobasidion* strains. It was temperature depending.
- All Trichoderma strains showed antagonistic activity against Heterobasidion.
- Selected psychrotrophic fast growing *T. viride* and *T. viridescens* strains could be recommended for further investigations of antagonist agents for the control of *H. annosum* and *H. parviporum* within a wide range of temperatures what is essential for temperate climate zone where fluctuating temperatures are common.

<hank you for your attentions

The research is financed by ERAF (2010/0277/2DP/2.1.1.1.0/19/APIA/VIAA/129).